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Abstract

Anorexia nervosa (AN) is a psychiatric illness with minimal effective treatments and a very high 

rate of mortality. Understanding the neurobiological underpinnings of the disease is imperative for 

improving outcomes and can be aided by the study of animal models. The activity-based anorexia 

rodent model (ABA) is the current best parallel for the study of AN. This review describes the 

basic neurobiology of feeding and hyperactivity seen in both ABA and AN, and compiles the 

research on the role that stress-response and reward pathways play in modulating the homeostatic 

drive to eat and to expend energy, which become dysfunctional in ABA and AN.
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INTRODUCTION

Anorexia nervosa (AN) is a poorly understood psychiatric disorder that commonly begins in 

adolescence and that is more prevalent in women. It involves abnormally restrictive eating 

behavior leading to cachexia, combined with an irrational fear of weight gain and obsession 

with body shape.1 Women with AN often have other psychiatric comorbidities, such as 

depression and anxiety, and those with a diagnosis of anorexia also have the highest 

mortality rate of all psychiatric illnesses.2,3 The prevalence of AN in developed countries is 

near 1% of the female population, and family studies have shown 50% genetic contribution 

to heritability, which combines with environmental pressures to produce illness.4–6 Given 

the high percentage of genetic influence, it is likely that biological treatments could have 

good effect, yet few specific treatments are available. Pharmacologic studies in AN have 

been confusing at best, with conflicting results between studies and minimal improvement in 
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disease symptoms or weight restoration. Thus, it is imperative to better understand the 

pathophysiology involved in order to develop new treatment targets. Doing so requires 

insight into the biology and neural circuitry that govern reduced feeding and related 

behaviors.

Much work has been done in animal models to understand the physiology of normal feeding 

behavior. AN is complicated by its constellation of symptoms that go along with low weight, 

as well as by select predisposing factors, including excessive exercise and motor 

restlessness, an anxious or obsessive temperament, extreme self-control and reward 

insensitivity, and cognitive inflexibility.7–10 Some of the traits seen in AN, such as an 

obsession with thinness and fear of gaining weight, are impossible to model in animals. 

Interesting work studying circulating biomarkers of energy balance and of stress in AN 

patients has not yet yielded viable treatment targets.11–13 Studies of brain activity 

abnormalities related to fear, reward, and cognition using fMRI point to the utility of more 

invasive study in animal models.14–16

To better understand how all of these components fit together to affect feeding behavior in 

AN, it is important to grasp how the drive to eat is developed. Energy homeostasis is the 

balance between energy intake, or feeding, and energy expenditure, the combination of 

internal body heat production and external physical activity. When energy intake is less than 

energy expended, as occurs in AN, one is said to be in negative energy balance, which 

triggers the sensations that go along with hunger. For mammals under normal conditions, the 

outcome is to feed.

Researchers have tried to use food-restriction paradigms to model eating disorders, but these 

efforts are stymied by the animals’ innate preference for homeostasis. Unlike people with 

AN, who combine food restriction with excess activity to optimize weight loss, rodents 

given unrestricted access to food and a running wheel in their cages eat more to compensate 

for increased energy expenditure.17 When food is freely available in the natural habitat, 

physically healthy animals do not voluntarily restrict food intake. The signaling milieu 

(hormones and neuropeptides) that develops during a fast leads to optimized energy balance 

when food is presented, so body-weight change is minimal.17–21 This homeostatic balance is 

upset in the activity-based anorexia (ABA) model. In the ABA model, food restriction to one 

hour per day (rats) or two to four hours per day (mice) is combined with unlimited access to 

a running wheel. In this paradigm, a rodent’s food intake declines strikingly in combination 

with elevated running-wheel activity, leading to weight loss exceeding 30% of original 

weight.22 Animals also begin to engage in stereotyped activity—namely, hyperactivity prior 

to presentation of food, known as food-anticipatory activity.

By recapitulating both the overactivity and the undereating components of AN, the ABA 

model mimics AN fairly well. Much like AN, age and gender play a role in the susceptibility 

to ABA development; female adolescent rats are more likely to develop ABA and tolerate 

the paradigm.23,24 Early-life stressors, such as early weaning or cold temperatures, also 

increase susceptibility to development of ABA behavior in rats, and this behavior is 

ameliorated by environmental enrichment.25–28 It takes approximately one week to develop 

ABA behavior in rodents, which is roughly equivalent to a few months for humans. Some 
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animals progress to self-starvation and death, similar to the near 10% of patients with AN 

who die from suicide, starvation, or complications of electrolyte imbalance. Importantly, 

ABA rodents overcome the basic homeostatic mechanism for survival, reducing their food 

intake in the presence of hunger and body-weight loss, in combination with increased energy 

expenditure through increased locomotor activity.29 ABA is the only known model where 

nonhuman mammals choose self-starvation over homeostatic balance. The ABA model also 

recapitulates a number of endocrinologic findings that are seen in AN patients through the 

hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal axes.30,31

Much like people, not all animals exposed to the ABA paradigm develop ABA. A population 

is therefore available to study the differences in susceptibility to development of disease, 

including the role of genetic versus environmental influences (which can be better controlled 

in animal populations). Equivalent research would be nearly impossible to coordinate in 

humans, as it would require a massive cohort and the enrollment of children. Given that a 

major research question in the field of eating disorders is how much of the disease pathology 

is related to the state or scar of malnutrition, an animal study that can distinguish this factor 

prospectively would provide a huge boon to the field. Investigating circulating hormones, 

neuropeptide and receptor expression, and brain circuit connectivity both prior to and after 

disease onset in rodents—and comparing these findings to those animals that are resistant to 

the development of ABA— is providing rich information useful for prevention or early 

treatment of AN. Recent, elegant studies to determine what underlying factors lead animals 

to be susceptible to the development of ABA have laid the groundwork for the utility of the 

ABA model in prevention and treatment studies that will be applicable to human disease.32

What makes modeling the pathophysiology of AN uniquely difficult is the influence of 

socio-environmental and psychological factors, some of which are mediated by fear- and 

stress-response pathways, such as the obsession with thinness and extreme fear of weight 

gain, both of which clash with the neurobiological drive to eat.33,34 The motivation and 

emotions associated with eating—in particular, non-homeostatic feeding—also offset energy 

demands that drive homeostatic feeding.35–37 With non-homeostatic feeding, the 

endogenous energy-regulatory signals are thought to become ineffective at transmitting 

feedback to the central nervous system (CNS), and feeding is potentially regulated through 

some other CNS circuitry. This additional circuitry is either directly or indirectly connected 

with hypothalamic circuitry to modulate feeding behavior; the reductionist methods afforded 

by the ABA model may prove to be the most effective way of unraveling these interactions.

This review will discuss in detail the neurobiology of feeding behavior originating in the 

hypothalamus, and the way in which non-homeostatic signals coming from stress and reward 

pathways impinge on the physiologic homeostatic pathways of metabolism. It will focus on 

the parallels between the ABA rodent model and human AN, with a discussion as to how 

ABA is the best current model for improving biological understanding and for developing 

new treatment options for AN.
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HOMEOSTATIC FEEDING AND ACTIVITY: MAJOR CIRCULATING 

HORMONES

Peripherally derived signals that modulate metabolic neuropeptide activity in the 

hypothalamus include hormones such as leptin, ghrelin, and corticosterone, as well as sex 

hormones, such as estrogen.

Leptin is produced by adipocytes in fat stores. Circulating leptin concentration is reflective 

of the total amount of body fat and is highly correlated to energy stores in adipose tissues. 

Leptin expression levels rise with body fat status, whereas fasting reduces its 

availability.38–40 High levels of circulating leptin serve to promote satiation and heat 

production, and animals lacking leptin are hypoactive.41 Adaptive responses to low leptin 

levels in negative energy balance include decreased energy expenditure, suppressed gonadal- 

and thyroid-axis function, and increased activation of the adrenal axis.39,42 Furthermore, 

treatment with leptin in mice with low leptin levels restores normal functioning of the HPA, 

hypothalamic-pituitary-gonadal, and thyroid axes.39 Because people with AN have low 

levels of body fat, they have reduced leptin levels in both plasma and cerebrospinal 

fluid.43–47 ABA rats also have reduced leptin systemically, and exogenously applied leptin 

reduces hyperactivity, decreases food intake, and increases thermogenesis in the model.21

Ghrelin is produced in the gastrointestinal tract and is negatively correlated with energy 

balance such that when the stomach is empty, ghrelin is secreted. Ghrelin signals to increase 

hunger and stimulates locomotor activity and reward pathways.48–51 Similar to leptin, but 

with opposite function, circulating ghrelin levels reflect changes in body weight; high 

ghrelin levels are seen after weight loss due to food restriction or deprivation.52,53 However, 

ghrelin also suppresses brown adipose tissue activity, a source of heat production, quieting 

energy expenditure while promoting food intake. In AN patients, ghrelin levels are elevated 

compared to normal-body-weight and obese subjects.54,55 Ghrelin levels are also found to be 

increased in ABA mice.56 Patients with AN who are treated with ghrelin develop increased 

appetite and adiposity.57,58 Unfortunately, the fear of weight gain that is pathognomonic for 

the disease precludes treatment with ghrelin from being a viable option.

Corticosterone (dominant in rodents) or cortisol (dominant in humans) (both referred to as 

CORT) is important for maintaining glucose availability. CORT is produced by the adrenal 

gland. Its synthesis and secretion is stimulated by adrenocorticotropin (ACTH), which is 

secreted from the anterior pituitary gland in response to corticotrophin-releasing hormone 

(CRH) from the hypothalamus. During a fast or food deprivation, ACTH and CORT levels 

rise, and in AN, CORT levels are high.59–63 In non-disease states, treatment with CORT 

increases the size of fat stores.64 Chronic CORT administration stimulates foraging behavior 

and food intake.65 As stress induces the secretion of corticosteroids, higher levels of CORT 

increase motivation for comfort-type food in humans and in rats.66 CORT also provides 

negative feedback to the hypothalamus to decrease production of CRH and to stop 

production of ACTH, thereby putting the brakes on its own expression. During a fast, CORT 

is increased in circulation. This effect is seen in both AN and the ABA model; both show 

similarly increased CORT signaling.67
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Estrogen, the female sex hormone, though not specifically a metabolic hormone, does play a 

role in food intake and body-weight control. Its release from the ovary is regulated by the 

hypothalamic-pituitary-gonadal, which is affected by body-weight status and the presence of 

leptin. In women, increased levels of body dissatisfaction have been associated with low 

levels of estrogen, and the level of body dissatisfaction fluctuates during the menstrual 

cycle.68 Interestingly, leptin-receptor expression in the hypothalamus also fluctuates with 

estrogen levels during the menstrual cycle, but no change in associated feeding behavior has 

been described.68,69 Decreased levels of estrogen after menopause or ovariectomy lead to 

hyperphagia and weight gain, and deletion of the alpha subtype of the estrogen receptor (the 

primary form of the receptor found in the hypothalamus) leads to obesity in both male and 

female mouse models.70,71 Direct application of estrogen to the brain in animals leads to 

hypophagia.72 In states of negative energy balance, estrogen levels are low, which is thought 

to be the underlying cause of amenorrhea in patients with AN. No studies have looked at 

estrogen signaling in the ABA model.

HYPOTHALAMIC NEURONS RESPOND TO CIRCULATING METABOLIC 

HORMONES TO REGULATE FEEDING AND ACTIVITY

The arcuate nucleus (ARC) of the hypothalamus is a key node in understanding the neural 

circuit regulating feeding. The ARC lies adjacent to the median eminence, where the blood-

brain barrier is relatively permeable for metabolic hormones.73 The endocrine factors that 

signal energy sufficiency or deficiency act on subsets of neurons in the ARC to effect the 

electrical and chemical signaling of ARC neurons. These neurons project to, and act on, 

multiple nuclei within and outside the hypothalamus and can secrete specific neuropeptides 

that orchestrate feeding behavior and energy expenditure in response to bodily needs (see 

Figure 1 and Table 1). Two important populations of neurons are found in the ARC and play 

antagonistic roles in controlling feeding behavior and energy balance.161,162 One type of 

neuron is orexigenic and co-expresses agouti-related peptide (AgRP), neuropeptide Y 

(NPY), and GABA; these are commonly referred to as AgRP neurons. The other, referred to 

as POMC neurons, co-express pro-opiomelanocortin (POMC) and cocaine- and 

amphetamine-regulated transcript (CART) and are anorexigenic.

Agouti-Related Peptide and Neuropeptide Y

AgRP neurons are both necessary and sufficient to drive food-seeking activity and 

consumption.82,83,163,164 Silencing AgRP neurons in fasted mice prevents food intake.82,83 

Direct acute stimulation of AgRP neurons drives intense feeding and weight gain within 

minutes, even in sated mice.82,83 This orexigenic effect is thought to occur by the inverse 

agonism of the AgRP peptide on melanocortin 3/4 receptor (MC3/4R)–expressing neurons 

in the paraventricular nucleus of the hypothalamus (PVH).165,166 Before a feeding period, 

when ghrelin and CORT levels are high and leptin levels are low, the activity of AgRP 

neurons peaks, causing AgRP and NPY mRNA expression and synthesis to 

increase.91,101,167–169 Activity of AgRP neurons in brain slices was found to be enhanced 

following fasting.170,171 In vivo studies show that AgRP neuron activity decreases as 

quickly as food becomes available.163,164,172
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Administration of exogenous AgRP and NPY have a potent stimulatory effect on feeding 

and locomotor activity.79–81,173,174 However, AgRP- and NPY-deficient mice exhibit normal 

body weight under ad libitum feeding.78 Notably, ablation of AgRP neurons in adult mice, 

as opposed to neonates, leads to starvation and death, suggesting that there is compensation 

for the individual genetic knockout of the peptides but that the neurons are required to drive 

feeding.175

NPY knockout mice show reduced food intake in response to a fast but no significant 

decrease in body weight under normal diet conditions, suggesting that NPY may be more 

important for fasting-induced refeeding than for baseline regulation of food intake.176,177 

AgRP and NPY gene expression is increased in states of negative energy balance in rats and 

in patients with AN compared to healthy controls.62,178 In the ABA model, AgRP and NPY 
are even more robustly expressed than during a simple fast.178

Injection of leptin suppresses AgRP and NPYexpression, inhibits the spiking activity of 

AgRP neurons, reduces food intake and meal size, and increases energy 

expenditure.84–87,121,179 Oppositely, ghrelin increases AgRP activity and food 

consumption.88–90,180 This effect is most marked when ghrelin is injected in the ARC, 

indicating a direct role on the AgRP neurons.58 CORT increases AgRP mRNA expression 

and neuron activity.91,101,167–169 Estrogen suppresses AgRP neuron activation in rodents, 

and in the murine menstrual cycle, AgRP levels vary inversely with estrogen levels.181

Besides being co-expressed with AgRP in the ARC, NPY is abundantly expressed 

throughout the brain.167 Ghrelin and CORT enhance NPY orexigenic activity, while leptin 

decreases it.91,101,167–169,182 Estrogen leads to a decrease in NPY expression in the mouse 

hypothalamus but an increase in NPY receptor gene expression in rat pituitary cell culture, 

suggesting altered NPY sensitivity may play a role in estrogen-induced hypophagia.181,183

Pro-opiomelanocortin

Pro-opiomelanocortin (POMC) neuron activation suppresses food intake and stimulates 

energy expenditure by activation of MC3/4R.83,102 The neuropeptide POMC is cleaved to 

produce ACTH and beta-lipoprotein. Further processing of ACTH in the ARC produces 

alpha-melanocyte-stimulating hormone (alpha-MSH), and processing of beta-lipoprotein in 

the pituitary produces beta-endorphin. Terminals of POMC and AgRP neurons project to 

similar regions that contain neurons expressing MC3/4R, which are excited by the release of 

alpha-MSH (and antagonized by AgRP).184 Within the ARC, POMC neuron activity can be 

modulated by AgRP neurons, but not vice versa.185,186

Deletion of POMC leads to hyperphagia and obesity.96,97 This phenotype can be reversed by 

exogenous administration of alpha-MSH—which, when injected specifically in the PVH, 

rapidly and robustly inhibits food intake.98–100 Furthermore, POMC-deficient mice exhibit 

low levels of circulating CORT, likely due to the role that the POMC-cleavage product, 

ACTH, plays in CORT secretion.98

The other cleavage products of POMC, beta-lipoprotein and beta-endorphin, are endogenous 

opioids that interact with opioid receptors to regulate energy intake and utilization through 
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reward-mediated behavior.187,188 Endogenous opioid peptides function as neurotransmitters 

and are released during intrinsically rewarding activities, such as exercise. Increased levels 

of endorphins inhibit the experience of pain.189–191 Furthermore, opioid peptides are key 

mediators of hedonic balance and emotional response in food intake.192 Beta-endorphin 

terminals are distributed throughout the CNS, including the PVH, where they inhibit the 

HPA axis.193 Beta-endorphin KO mice are obese and hyperphagic.107 Exogenous 

administration of beta-endorphin in chicks increases food intake, and pharmacologic 

activation of the beta-endorphin receptor in mice drives feeding.108,194

Leptin activates POMC neurons by increasing their firing rate and increases POMC 
mRNA.87,103,104,114,195,196 Estrogen receptors are found on POMC neurons and are thought 

to play a role in leptin’s effect on POMC expression.197 Estrogen administration centrally 

also leads to increased excitability of POMC neurons.162 Ghrelin, oppositely, inhibits 

POMC neuron activity, and application of CORT decreases POMC mRNA and gene 

expression.105,106,109

Cocaine- and Amphetamine-Regulated Transcript

CART-expressing neurons co-localize with POMC neurons in the ARC. CART-expressing 

neurons are also found in the paraventricular nucleus of the hypothalamus, the lateral 

hypothalamus (LH), and the dorsomedial hypothalamus.111,126,198 Injection of CART 

directly to the PVH increases thermogenesis and decreases feeding and body 

weight.95,110,111 It has been shown that CART in the PVH interacts with downstream NPY-

signaling pathways, and may inhibit feeding through activation of CRH.112,199

CART expression is mediated by leptin and ghrelin. Low leptin levels following fasting 

suppress CART expression in the ARC, and intracerebroventricular administration of CART 

increases leptin levels.39,115,116,200 Ghrelin increases CART expression, and refeeding of 

fasted animals strongly increases CART.200 Distinct CART neurons in different brain 

regions may respond oppositely to leptin and ghrelin, though it is unclear how this 

influences energy balance. CORT signaling leads to increased CART expression and 

neuronal activity, which induces thermogenesis, independent of POMC.112,113,201 

Estrogen’s effects on CART expression are known to be site specific and vary by region.202

In states of negative energy balance, POMC and CART expression are decreased in rats and 

humans.62,178,203 In the ABA model, as well as in patients with AN, POMC and CART are 

similarly decreased compared to sedentary controls.178 However, in both AN and the ABA 

model, beta-endorphin levels are high in negative energy balance, which may relate to its 

role in reward signaling.204–207

Orexin

Outside of the ARC are other hypothalamic populations that fluctuate with the hormones 

and signals that reflect energy status. Orexin-expressing neurons (also called hypocretin-

expressing neurons), localized in the lateral hypothalamus, promote feeding and locomotor 

activity.118,119 These orexin neurons project to numerous areas in the brain, with direct 

projections to the ARC.208–210
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Deletion of orexin leads to hypophagia and decreased locomotor activity as well as to 

reduced brown fat thermogenesis.118–120 Injection of orexin directly into the ARC increases 

food intake by stimulating NPY and inhibiting POMC neural activity.121–124,211,212 

Feedback innervation of orexin neurons by NPY inhibits orexin neuronal activity.208,209,213 

Orexin activity in the LH is also decreased by intracerebroventricular CART administration, 

which inhibits both locomotor activity and food intake.125–127

In addition, orexin neurons send projections to the PVH and to several mesolimbic areas 

where orexin receptors, as well as opioid and dopamine receptors, are densely expressed. 

These projections provide a neuroanatomical basis for interaction between opioids and non-

opioid peptides in both the satiety and the reward centers of the brain.214 In support of this 

potential interaction, the feeding response induced by central injection of orexin is greatly 

attenuated by co-administration of an opioid receptor antagonist.215,216 Also, 

intracerebroventricular administration of orexin increases the motivation for food seeking, 

particularly for palatable food.217,218

While orexin neurons are insensitive to changes in leptin levels under physiological 

conditions (i.e., the range of leptin levels induced by the body, as opposed to extreme levels 

that can be induced by leptin injection), ghrelin stimulates orexin mRNA 

expression.119,128,219 The orexin neurons are activated by food deprivation through ghrelin 

and CORT, facilitating locomotor activity and food-seeking behavior under conditions of 

fasting.92,93,129,130,134,219 Estrogen suppresses orexin expression in ovariectomized rats, 

which is thought to contribute to the role of estrogen on feeding.202 In states of negative 

energy balance, there is no change in orexin mRNA expression in male and female 

rats.178,220 Surprisingly, in patients with AN and in ABA rats, orexin levels are found to be 

increased compared to sedentary controls.62,178,221,222 This finding points to the LH—and to 

orexin, in particular—as a potential target for better understanding and possible treatment of 

AN.

Melanin-Concentrating Hormone

A separate neuronal population in the LH distinct from orexin-expressing neurons expresses 

melanin-concentrating hormone (MCH). These MCH neurons, like orexin neurons, promote 

palatable food intake and are stimulated by palatable food.223 They also play an important 

role in processing hedonic and rewarding behaviors associated with feeding. The projections 

of MCH and orexin neurons exhibit significant overlap, including projections to the regions 

of feeding and reward circuitry.134,135,224–226 Like orexin, MCH expression is unchanged by 

fasting in female rats, but studies in male mice have shown elevated MCH after food 

restriction. It is unclear if either is generalizable to humans with AN; more gender- and 

species-specific study is warranted. Orexin and MCH have different, but complementary, 

effects on behavior, with orexin promoting food seeking and motivation for palatable food 

and MCH functioning during ongoing food intake, reinforcing the consumption of 

calorically dense foods.208,219,223

Leptin application decreases MCH and MCH receptor (MCHR1) mRNA levels, but MCH 

neurons are unaffected by ghrelin administration.137 Intracerebroventricular administration 

of MCH stimulates feeding, but to a lesser extent than NPY-induced feeding.134–136 MCH-
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deficient mice are lean, indicating that MCH signaling is important for maintaining energy 

homeostasis.132,133,227,228 Similarly, chronic administration of an MCHR1 antagonist 

decreases body weight by reducing food intake.229,230 In rats, adrenalectomy also decreases 

MCH mRNA levels, but MCH expression is not restored by replacing CORT, suggesting that 

MCH-driven effects are independent of CORT.138,139 Despite earlier research showing that 

estrogen inhibits MCH expression, more recent studies show that MCH expression does not 

change in response to estrogen and that estrogen’s effect on food intake is independent of 

MCH.131,202,231 Though not studied in AN, in the ABA model, MCH levels, like orexin 

levels, are increased compared to sedentary, food-restricted female rats.178

In the setting of food restriction and hyperactivity, where energy balance is negative, neither 

ABA rodents nor AN patients feed to levels that would reestablish energy balance. 

Neuropeptides in the ARC are expressed at levels that would be expected to increase 

feeding, but feeding does not increase. Neurons of the LH, which have reciprocal connection 

with other areas of the hypothalamus and with reward circuitry, do show unexpected 

elevation of orexigenic neuropeptides. Therefore, it is likely that other signals impinge on 

these hunger signals downstream and prevent their translation to the act of feeding.

NON-HOMEOSTATIC CONTROL OF FEEDING AND ACTIVITY

Stress: The Hypothalamic-Pituitary-Adrenal Axis and Corticotrophin-Releasing Hormone

Interactions between the hypothalamus, the pituitary, and the adrenal gland control 

responses to stress and regulate many processes, including energy storage and expenditure. 

Neurons expressing corticotrophin-releasing hormone are abundant in the PVH, though 

CRH is also heavily expressed in other brain regions. CRH is released from the 

hypothalamus with stress and physical activity, which leads to activation of the HPA-axis 

cascade: CRH stimulates anterior pituitary cells to produce ACTH from POMC, which is 

released to systemic circulation and stimulates the adrenal cortex to produce CORT, the 

major stress-response hormone. Circulating CORT acts to decrease the production of CRH, 

whereas ghrelin increases it.146

Central administration of CRH stimulates the release of CORT acutely and leads to 

increased energy expenditure and locomotor activity but reduced calorie intake.141–143,232 

Chronic continuous CRH administration over two days overrides CORT feedback, leading to 

further increased levels of circulating CORT.233 Mice that are deficient in CRH exhibit 

normal body weight and food intake, and CRH expression does not change in a state of 

negative energy balance.140,178 However, in patients with AN, CRH is increased.62,221 CRH 
expression remains unchanged at the onset of ABA development but is elevated when ABA 

rats approach 75% of original body weight.67,178,234,235 These changes in CRH and in other 

neuropeptides are presented in Table 2.

The HPA Axis in Feeding and Activity

ARC neuropeptides have significant effects on HPA-axis activity.249 For example, infusion 

of AgRP on hypothalamic explants significantly increases CRH release, and central injection 

of NPY stimulates the HPA axis in rats.250–252 Alpha-MSH and CART increase the 

Ross et al. Page 9

Harv Rev Psychiatry. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



circulating levels of ACTH and CORT, and stimulate CRH release from hypothalamic 

neurons.251,253,254 The implication is that signals produced in both negative energy balance 

and satiety can induce a stress response. Furthermore, central leptin injection increases CRH 
mRNA but blunts HPA-axis responses to stress.144,145 Blockade of CRH signaling 

attenuates leptin-induced and exercise-induced anorexia, implying that CRH interferes with 

pro-homeostatic signals.144,146,255,256

Different types of stress have different effects on neuropeptides and hormones. Stress-

induced modulation of feeding is thought to occur through the HPA axis, due to its 

proximity to the melanocortin system in the PVH.257–259 Given the variety of stressors that 

contribute to the development of AN and ABA, the direct results of HPA-axis activation may 

vary among individuals. The HPA effect on food intake is bidirectional, with both increases 

and decreases observed, depending on the type of stressor or model studied.259 It is likely 

that when manifest as AN, the stress-induced chronic activation of the HPA axis does 

contribute to decreased feeding. What factors influence this susceptibility are not yet known 

and would be a useful target for study with the ABA model.

The HPA Axis in AN and ABA: The Effect of Stress on Feeding, Activity, Hormones, and 
Neuropeptides

It has been well documented that the HPA axis is elevated in patients with AN, with 

increased CRH and CORT levels that then drive the patient’s hyperactivity.237–240 The 

hypercortisolism seen in AN is associated with increased central CRH and normal 

circulating levels of ACTH, which indicates a broken feedback loop.60,61 The paradoxical 

hyperproduction of CRH that causes sustained HPA-axis activity could be due to the 

continued stress of hyperactivity, food restriction, or emotional stressors.61,260

Many patients with AN have a history of traumatic or other stressful events that may affect 

stress responsivity in later years.240,261 In animals, early-life stress is recapitulated by early 

weaning, single housing, or severe food restriction, and the addition of these stressors to the 

ABA paradigm leads more animals to develop ABA.262

Exercise is itself a physical stressor that can lead to elevated plasma CORT levels.263 In fact, 

patients with AN who are hyperactive display higher levels of CORT than less active 

patients with comparable body weights. Treadmill running alone has been found to increase 

CRH mRNA levels in the PVH.145 Increased levels of CRH and increased activity of the 

HPA axis result in hyperactive behavior.255 Multiple components of the ABA model are 

therefore stressful to the animal; together, starvation and hyperactivity have an additive 

effect on CRH and circulating CORT levels, much like the multiple life stressors that often 

accompany the development of AN.264

Higher levels of CORT in AN are associated with lower fMRI activity levels in the 

amygdala, hypothalamus, insula, and prefrontal cortex in response to food imagery.265,266 A 

palatable meal increases activity of the amygdala in AN patients compared to healthy 

controls, which may be related to the aversive nature of the palatable food to an AN patient, 

or to the fear of weight gain.267 Hours after a calorie-controlled meal, CORT remains high 
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for AN compared to healthy controls, with similar hypoactivation of the amygdala and 

insula on fMRI.266

Chronic stress increases preference for palatable food in young mice.268 Palatable food, such 

as sucrose or lard, reduces CRH expression in the PVH and resultant anxiety-like 

behavior.269–274 Yet, under stress there are no differences in plasma CORT levels in young 

versus aged mice.268 These findings indicate a role for central regulation of other non-

homeostatic feeding pathways with the capacity to affect body weight in the setting of 

elevated stress. More studies may be helpful to determine if the inability to adapt to elevated 

CRH, along with the signaling cascade it sets off, may directly affect how ABA animals or 

patients with AN respond to feeding neuropeptides.275

Reward Circuitry: Hyperactivity and the Neuropeptides of Reward

Similar to stress-response pathways, the reward/motivation circuitry has direct connections 

to the metabolic neurons of the hypothalamus, and affects energy balance. Further, growing 

evidence suggests that food, exercise, and drugs of abuse have similar rewarding properties 

and activate overlapping neural systems.276–281 It is thought that AN patients become 

addicted to physical activity while reviling food reward. Evidence suggests that reward-

based associations with activity can also explain the paradox of self-starvation and 

hyperactivity that leads to physical collapse in the ABA model.282–284

Food anticipatory activity (FAA) in animals is defined as a specific, intrinsically rewarding 

peak in activity prior to a scheduled feeding.285 This phenomenon may be based in 

evolution, providing the necessary drive a starved animal would need to continue to search 

for food to survive.248,286–288 Alternatively, FAA may provide active heat generation that 

yields purposeful thermogenesis, as opposed to calorie-squandering brown fat activity. 

Though this increased activity before a meal has no direct correlate in humans, hyperactivity 

in AN is prominent and is thought to be analogous to FAA, as both represent a choice to 

engage in activity that is directly at odds with the energy requirements necessary for 

survival.

The regulation of the rewarding aspects of feeding and activity involve the dopaminergic and 

serotonergic systems.36,37,289 While dopaminergic signaling is associated with the 

expression of an appetitive reward system, the serotonergic system signals the prediction of 

both punishments and rewards.290,291 Importantly, these two systems interact with each 

other to effect reward.

The reward circuitry includes the following: the ventral tegmental area (VTA), a 

dopaminergic midbrain area implicated in reward signaling; the nucleus accumbens (NAc), 

which is implicated in hedonic and motivational aspects of feeding; the amygdala, involved 

in aversive response learning; and the striatonigral pathway, which is implicated in hedonic 

evaluation of stimuli and also in transposing stimulus-driven motivation into motor 

responses.243,244,292–295 The hypothalamus is linked to this “motivational circuitry” both 

anatomically and functionally by multiple pathways, allowing information regarding energy 

balance to affect motivation and vice versa. Specifically, the lateral hypothalamus is a crucial 

area for coordinating motivated feeding behavior since it both receives afferents from the 
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amygdala and projects to the VTA.37,296–299 Moreover, ARC AgRP neurons project directly 

to the central amygdala, which is implicated in the control of feeding, and to the extended 

amygdala complex (including the bed nucleus of the stria terminalis), which is implicated in 

modulating VTA dopaminergic activity.300–303

Dopamine’s Role in Feeding and Activity

The mesolimbic dopamine (DA) system, important in the reward value of food and in 

addiction behavior, is implicated in feeding and FAA.304–306 DA is correlated to anorexia-

associated hyperactivity, and increases during FAA.307 Food restriction results in a decrease 

in DA.308 However, palatable food selectively enhances release of DA in the NAc.245,308–310 

Food-restricted rats given a DA D1-receptor agonist, but not D2-receptor agonist, show 

increased preference for palatable food.311 Systemic administration of DA receptor 

antagonist is strongly correlated with a decrease in FAA in food-restricted rats that are 

presented with palatable food.312 However, the different contributions of individual DA 

receptor subtypes suggest that it is important to distinguish between the receptor subtype–

specific neural pathways to determine DA effects on feeding.

Since the NAc receives both POMC and AgRP projections from the ARC, the convergence 

of these projections with DA from the VTA may be a mechanism through which hunger 

states directly modulate the motivation to eat.313,314 Notably, VTA dopaminergic neurons 

also receive taste information via afferent sensory fibers, which allows for direct integration 

of food information with motivational behavior.315,316

AN patients show decreased DA metabolites, indicating low DA, as well as increased 

density of DA receptors, suggesting increased sensitivity to low DA levels.243,244 However, 

in cognitive and fMRI studies of people with a history of AN who have recovered their 

weight, there is a decrease in reward sensitivity compared to healthy controls in regard to 

both food-related and neutral, non-food-related cues.16,265,317 This seeming contradiction of 

an increase in receptor density but decreased sensitivity to reward may be explained by the 

alteration in the reward value of food intake, which has been shown to be an aversive 

stimulus for AN patients.289,318,319 Instead, other stimuli become rewarding, possibly due to 

the chronic stress that sensitizes DA reward circuitry via the HPA axis.320 Thus, the 

decreased reward sensitivity seen in humans with AN, tempered by CRH and elevated 

CORT levels, likely plays a role in dampening the rewarding aspects of feeding.

Alterations in the mesolimbic DA system are reported in the ABA model compared to rats 

fed ad lib, with increased DA in the NAc during food consumption but not during food 

anticipation.33,245 Administration of a DA antagonist reduces activity levels and increases 

body weight and food intake in ABA rats compared to ad lib fed rats, indicating that direct 

manipulation of reward circuitry can affect metabolic outcomes.156

The mechanisms through which the dopaminergic mesolimbic system reinforces running-

wheel behavior during food restriction (and vice versa) may be through its interaction with 

other homeostatic feeding signals. Ghrelin, which is known to promote feeding, is also 

linked to FAA: plasma ghrelin levels in ABA rats are highly associated with FAA, and 

suppression of ghrelin signaling suppresses FAA.56 Ghrelin stimulates food intake primarily 
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via activating the hypothalamic pathway, but it also integrates non-homeostatic feeding 

through activity in the meso-cortico-limbic pathway, including direct activation of VTA 

neurons.76 Systemic injection of ghrelin in mice causes an increase in DA neuronal activity 

and synapse formation, which is blocked by intra-VTA delivery of a selective ghrelin 

receptor antagonist, indicating co-expression of DA and ghrelin receptors in the mesolimbic 

system.160 Microinjection of ghrelin in the VTA of rats drives food intake—which is thought 

to be the basis of reward-driven eating behavior.75,77 In fact, it was shown recently that 

palatable food feeding does not need to be driven by AgRP neurons but can be induced by 

ghrelin activity on DA neurons in the VTA.321

Leptin, in addition to suppressing feeding and hyperactivity, is known to attenuate the effects 

of DA on motivated behaviors in reward-related brain areas.74,157–159 Leptin action in the 

VTA regulates effort-based responding for food rewards.322 Direct intracerebroventricular 

administration of leptin to the VTA is sufficient to inhibit feeding behavior and reduce 

hyperactivity.323 Thus, because of the direct effect of leptin on the midbrain DA system, low 

levels of leptin in ABA and AN may have a role in decreased feeding and hyperactivity.

In vivo studies report various effects of CORT on DA, showing that it can increase, decrease, 

or not alter DA utilization and release in rodents; no conclusive statements can be made on 

this interaction with feeding.324–329 The interaction of estrogen with DA has been 

extensively studied, though not in direct relation to feeding. Further study of these 

interactions in the ABA model is imperative.

Serotonin’s Role in Feeding and Activity

Serotonin plays a critical role in animals’ adaptation to aversive events, in the inhibition of 

appetite, in anxious and obsessive behaviors, and in depression. The serotonergic neurons 

are predominantly clustered into two major anatomic groups: the dorsal raphe nucleus 

(DRN), which projects to the forebrain, and the caudal raphe nuclei, which innervate brain 

stem structures and the spinal cord. Virtually all brain nuclei implicated in energy-balance 

regulation receive serotonergic afferents, including the PVH, dorsomedial hypothalamus, 

and lateral hypothalamus.330–333 Food restriction decreases serotonin levels in the 

hypothalamus.241 In turn, serotonin decreases food intake in humans and rodents, whether it 

is given systemically or centrally.147 Microinjection of serotonin directly into the PVH or 

LH of rats reduces meal size and feeding rate, and in the ARC, serotonin stimulates POMC 

neurons and inhibits AgRP neurons, leading to reduced food intake.149–152 In the LH, MCH 

reduces the activity of serotonergic neurons of the DRN.334 A more complex relationship 

exists between serotonin in the DRN and orexin.335 Both are implicated in the regulation of 

sleep and in the depressive disorders, though there is no direct study of the effects on 

feeding.

Ghrelin inhibits serotonin release in the hypothalamus of rats, and systemic administration 

of leptin increases serotonin levels, specifically in the hypothalamus and 

hippocampus.153,154 Serotonin and stress are tightly linked, and the administration of 

serotonin agonists increases CORT levels in rats.336 The complex relationship between 

estrogen and serotonin is reviewed elsewhere and is outside the scope of this review.337
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Levels of serotonin markers are lower in AN patients compared to healthy controls, and in 

ABA rats compared to ad lib fed active controls.33,242 Though low levels of serotonin would 

be expected to drive feeding, that does not occur in either ABA or AN—again pointing to 

the complexity of the systems.289,338

Reward in AN and ABA: Hyperactivity, Motivation, and Feeding Neuropeptides

Serotonin and DA neurons have been shown to exert stimulatory and inhibitory control, 

respectively, over pituitary release of the opioid beta-endorphins and are also modulated by 

the beta-endorphins.339,340 Feeding decreases plasma levels of endogenous opioids in 

patients with AN, suggesting that these decreases may alter the otherwise rewarding 

experience of eating.204 Anatomical and biochemical data reveal an interaction between 

opioids and DA actions on dopaminergic nerve terminals.340 Specifically, it has been shown 

that beta-endorphins effectively decrease DA neurotransmission in the hypothalamus.341 

Furthermore, antagonizing the opioid system with naloxone, an opiate antagonist, in ad lib 

fed rats blocks palatable food intake but not running-wheel activity.312 Mice deficient in mu-

opioid receptors (with reduced beta-endorphin signaling) display attenuated FAA during 

food restriction, indicating that opioid signaling may work together with DA signaling to 

effect reward salience.342

Orexin in the LH is another hormone involved in driving food intake and physical activity; 

activation of orexin receptors leads to an increase in feeding and physical activity.246,343,344 

Orexin plays a central role in reward mechanisms and in the effects of drugs of abuse, most 

likely through LH orexin neurons projecting to VTA dopaminergic neurons.345–349 Since 

orexin is elevated in ABA, it may mediate the rewarding properties of hyperactivity by 

interacting with the mesolimbic pathway and amplifying DA release, thus providing another 

incentive for an animal to engage in running activity.

MCH neurons from the LH project to the reward system, predominantly to the NAc. 

Interestingly, MCH receptors in the NAc have been shown to be co-localized with DA 

receptors.224–226 Injection of MCH to the NAc activates release of DA and increases feeding 

in sated rats, whereas injection of an MCH receptor antagonist has the opposite effect.224 

Blockade of MCH activity in the NAc shell reduces food intake.350 Furthermore, MCH-

deficient mice do not become hyperphagic when presented with a palatable diet, suggesting 

that MCH dysfunction in these mice affects the processing of hedonic cues associated with 

feeding.225

FAA has been linked to the orexigenic neurons in the ARC. AgRP neurons have direct 

projections to areas implicated in the reward value of FAA, including the VTA and the LH. 

Ablating these neurons impairs the adaptation to restricted feeding in rodents, demonstrating 

their necessity to entrain FAA.351 Through these projections, AgRP and alpha-MSH may act 

directly on dopaminergic VTA neurons to affect (increase or decrease, respectively) hedonic 

feeding, whereas the injection of melanocortin receptor agonist into the VTA in rats 

decreases the consumption of a palatable sucrose solution.352 When food delivery to food-

restricted mice is delayed, AgRP neurons increase their activity dramatically, which may 

indicate a function in reward valuation.303,353 Furthermore, AgRP activity was found to be 
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an aversive signal outright, which may explain the role of FAA or exercise as a reinforcing 

behavior to counteract the discomfort of metabolic hunger signals.164

Taken together, in both AN and ABA, there is an increase in orexigenic signals, but these are 

compromised by simultaneously malfunctioning signals from the reward circuitry that 

manipulate or override the hypothalamic metabolic drive to eat.

DISCUSSION

Although the ABA rodent model was developed 50 years ago, it has not yet been fully 

embraced as a homologue to AN. Though no animal model can fully recapitulate the 

emotional and environmental stressors inherent in the human condition, important parallels 

make ABA a valuable model for understanding AN. These parallels include the following: 

severely restricted food intake; low body weight; excessive exercise and hyperactivity; 

increased susceptibility in adolescents, females, and those with a history of traumatic early-

life events; and loss of normal estrous cycling. In this review, we have shown that both ABA 

and AN share common changes in neuropeptides of the LH, have elevated CRH and 

dysregulated HPA-axis signal response, and have dysregulated reward signaling related to 

DA, serotonin, and beta-endorphins. These changes—all of which differ from what would be 

expected in states of negative energy balance—would benefit from further study at the level 

of single cells, neuronal populations, or behavior. The goal would be to identify new targets 

for treatment and prevention of AN.

Notably, the ABA model shows similar changes to AN in homeostatic feeding-hormone and 

neuropeptide expression. Importantly, in the ARC these changes are not significantly 

different from what would be expected in a state of starvation. Yet somehow both the ABA 

animals and AN patients who progress from disease to death overcome the strong 

homeostatic drive to eat. In human studies, researchers are restricted to functional-imaging 

and biomarker changes, both of which are population-level studies in terms of bodily 

function. In preclinical studies, researchers have focused primarily on manipulating neuronal 

activity and studying neuropeptide expression and behavior. However, recent animal studies 

have shown significant changes, on multiple timescales, in the in vivo activity of AgRP and 

POMC neurons related to food availability, palatability, nutritional status, and time of 

day.163,164,172 Some of the reported changes are too fast to be induced by hormonal signals, 

indicating that a paradigm shift is required in order to understand the role of these neurons. 

It is highly likely that similar functions are at play in humans and that they may be 

tremendously important in the development of AN. Since no technology is yet available for 

this type of study in humans, the ABA rodent could provide a vast amount of information—

with potential application to neuromodulatory treatments, which are currently being 

investigated for use in AN.354

The orexigenic neuropeptides of the LH show similar perturbation when studied in AN and 

ABA, but the expression levels are higher than would be expected in a state of negative 

energy balance alone. The LH is historically known as a feeding center of the brain, as 

lesions of the area lead to starvation due to lack of motivation.355 The orexigenic peptides 

and the LH in general are of considerable interest for better understanding AN, and early 
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studies of electrical stimulation in the LH have shown promise in terms of driving food 

intake.356 Remarkably, few studies address the neuropeptide changes in ABA, and only one 

attempted invasive stimulation of the LH in ABA rats.178,357 Combining the study of 

neuropeptides with the study of neuronal population and single-neuron activity in the ABA 

model could enhance our knowledge of brain circuitry in AN, especially in the LH, 

potentially leading to the identification of new pharmacologic targets.

The LH is highly interconnected with stress and reward circuitry, two systems in the brain 

that are similarly dysfunctional in ABA and AN. The HPA axis shows a failure in negative 

feedback from elevated CORT, with sequelae related to both elevated systemic and central 

activity. The reward circuitry in both AN and ABA shows altered expression of the 

neuropeptides and receptors for serotonin and DA, with resultant changes in sensitivity to 

reward. In combination, these changes may amplify the incentive value of cues/behaviors 

previously experienced as rewarding or as stress modulating (e.g., food restriction and 

exercise). The result would be a DA-mediated bias of motivational processing toward 

reward-associated stimuli, thus causing a pathological drive for illness-related reward that 

magnifies anorectic psychopathology.320,358–360 To understand these systems, manipulations 

of chronicity and receptor type will be required, which the ABA model allows.

The alterations in serotonin and dopaminergic signaling in AN patients and ABA rodents 

may play a role in the elevated anxiety seen in patients with AN, underlying the fear of 

weight gain.33,34 AN patients are frequently treated with antipsychotics and antidepressants 

targeting DA and serotonin signaling to reduce agitation, obsessionality, and anxiety about 

refeeding.361,362 This treatment has been associated with reduced physical activity levels 

and increased body weight.363,364 By focusing on how the stress-related modulation of DA 

or serotonin in the NAc and VTA is accompanied by modulation in feeding, FAA, and 

hyperactivity in ABA rats, we will gain valuable information regarding the interplay 

between anxiety, reward, hyperactivity, and feeding in AN. This information may also be 

applicable to stress-related binge eating. Two other systems—for executive function and fear

—are also well known to be dysfunctional in AN, and to modulate homeostatic feeding. 

Because those systems have been less well studied in ABA, they were not discussed in this 

review.

A better understanding of the biology of relevant systemic interactions is important for 

developing rational treatments for AN. ABA rodents and, in particular, ABA mice can 

provide the genetic and anatomic access needed to precisely focus on one hormone, peptide, 

or receptor at a time and to broadly determine behavioral and biological outcomes of a 

miniscule perturbation within a network. This reductionist approach is crucial for rational 

design of improved pharmacologic and neuromodulatory interventions for AN.
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Figure 1. 
A simplified scheme of the interlinked neuronal circuits implicated in the regulation of 

feeding, reward, and stress. The scheme selectively highlights the interaction discussed in 

regard to anorexia nervosa and the activity-based anorexia rodent model. 5-HT, serotonin; 

ACTH, adrenocorticotropin; AgRP, agouti-related protein; ARC, arcuate nucleus 

(hypothalamus); BNST, bed nucleus (stria terminalis); CeA, central amygdala; CORT, 

corticosterone; CRH, corticotrophin-releasing hormone; DA, dopamine; LH, lateral 

hypothalamus; MC4R, melanocortin 4 receptors; MCH, melanin-concentrating hormone; 

NAc, nucleus accumbens; POMC, pro-opiomelanocortin; PVN, paraventricular 

hypothalamus; VTA, ventral tegmental area.
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Table 2

Comparison of Expression Levels of the Feeding Neuropeptides of the Hypothalamus in Fasted and Disease 

States

Peptide/hormone State of negative energy balance Anorexia nervosa Activity-based anorexia rodent 
model

AgRP ↑92,93,130,178 ↑221 ↑↑178

NPY ↑178 ↑221 ↑↑178

POMC ↓87,104,178,203 ↓236 ↓178

beta-endorphins ↑205 ↑204,207 ↑206

CART Similar to POMC Similar to POMC ↓178

Orexin =178 ↑222 ↑178

MCH =178 — ↑178

CRH Inconclusive ↑237,238,239,240 ↑67,178,234

Serotonin ↓241 ↓242 ↓33

Dopamine ↓75,77 ↓
↑ receptor density
243,244

↑33,245

Leptin ↓246 ↓43,44,45,46,47 ↓21,178

Ghrelin ↑52,53 ↑54,55 ↑56

CORT ↑67 ↑59,60,61,63 ↑67

Effects of exogenously 
applied leptin

↓ FI
↑ EE
87,101

Expected to ameliorate 
hyperactivity and depression247

↓ hyperactivity21,43,248

Effects of ghrelin ↑ activity AgRP and orexin 
neurons92,93

↑ FI57 ↑ hyperactivity56

Effects of CORT ↑ activity AgRP and orexin 
neurons92,93

— —

AgRP, agouti-related peptide; CART, cocaine- and amphetamine-regulated transcript; CORT, cortisol or corticosterone; CRH, corticotropin-
releasing hormone; EE, energy expenditure; FI, food intake; MCH, melanin-concentrating hormone; NPY, neuropeptide Y; POMC, pro-
opiomelanocortin. Studies were performed in rats, mice, or humans.
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